Dynamo Intraseasonal State Summary
See commentary on pages 2 and 4.

November 27, 2011
Prepared by Paul E. Roundy
Active MJO convection is growing over the central Indian basin. High amplitude 2-10 day westward-moving signals, including some MRG wave structure is present across the Indian basin, but the development of a TC has distorted these signals dramatically. A convectively coupled Kelvin wave has passed east of the basin, and the suppressed phase is approaching the Dynamo array from Africa. Maximum convection in the MJO band is still suggested from November 30-December 1 over the array, but at that time, the suppressed convective phase of the Kelvin wave will likely also be over the array. The zero OLR anomaly line in the Kelvin band is projected to be over the array around December 5, while MJO-band local OLR anomalies are likely to remain negative. These combined factors could lead to some increase in rainfall activity in the array by December 7, but the zero line in MJO-band OLR anomalies is likely to be inside the array December 10, followed by development of the suppressed phase.
Indian Ocean Dipole

OLR anomalies associated with the IOD are of moderate intensity, but seem to be declining in amplitude.

Suppressed convection in the MJO band is located over the Maritime continent, but is relatively low amplitude in comparison with the active phase over the Indian basin. This comparative lack of suppressed convective signal reduces the net RMM expression of this MJO event. The northern Indian basin cyclone has begun to project slightly onto the equatorial Rossby wave band. Active convection in a Kelvin wave is now approaching the western Pacific, with a suppressed convective signal in a Kelvin wave now entering the western Indian basin. This Kelvin wave will likely offset some of the active MJO rainfall over the Dynamo array over the next few days.

MJO active convection now centered just west of the dynamo array, and it extends to just east of the array.