Dynamo Intraseasonal State Summary
See commentary on pages 2 and 4.

December 10, 2011
Prepared by Paul E. Roundy
The positive OLR anomalies of the MJO band associated with the suppressed phase have now entered the Dynamo array. The active signal now extends roughly from the western Maritime Continent (with emphasis off the equator) across the western equatorial Pacific Ocean. The active convective phase of a Kelvin wave has apparently accelerated the advance of active MJO conditions eastward across the Pacific. Although the suppressed MJO state is amplifying over the western and central Indian basin, the active convective phase of a Kelvin wave is now entering the Dynamo array, leading to some temporary enhancement of convection relative to the quiet base state.

OLR projections still suggest potential for a new MJO event between December 25 and 30, but the projected amplitude has declined, suggesting more uncertainty in the specific timing of the event. Also, the projections suggest that this suppressed phase is likely to last longer than that centered back in mid-November, suggesting a return to a more average MJO timescale for the next event.
Indian Ocean Dipole

OLR anomalies associated with the IOD appear to be weakening.

MJO active convection has shifted east of the Indian basin, and it has also extended eastward to include portions of the western equatorial Pacific basin. Active convection in the Kelvin band is present over the eastern region of the active MJO zone over the western Pacific as well as approaching the dynamo array from the west (embedded within the suppressed MJO base state now developing in the same region). The suppressed convective phase of the Kelvin wave presently reduces convection in the MJO active region over the Maritime Continent. Extratropical waves propagating equatorward over the eastern Pacific are projecting signal onto both the Kelvin and the equatorial Rossby wave band.