Dynamo Intraseasonal State Summary
See commentary on pages 3 and 5.

January 29, 2012
Prepared by Paul E. Roundy
The prediction of growing convection in the MJO band in the vicinity of Northern Australia, the northern Coral Sea, and south west Pacific has begun to verify even more strongly than suggested in models and these OLR projections. The amplitude of the event is better expressed between 7.5 and 17.5S, at
These projections continue to indicate intensification of that signal, with amplification of a suppressed phase beginning in the equatorial region near 90E over the next few days. This suppressed signal would then extend eastward over Australia, gradually emerging over the southwestern Pacific basin in 20-30 days. A new active convective signal is suggested emerging over the central Indian basin after February 10. Convectively coupled Kelvin waves and equatorial Rossby waves continue to be active, but for the first time in several weeks, the relative amplitude of the signals in the MJO band are stronger—especially south of the equator.

This developing active MJO event might be a good case of convective initiation in the MJO band outside of the Indian basin. I tend to be cautious in applying the term “MJO initiation” to amplification of convection, since circulation features frequently precede the development of convection in the MJO band, suggesting that the convection did not develop first, but was instead a consequence of a signal that was already present.
MJO active convection is located over northern Australia, with a lower amplitude region extending over Africa and the western Indian basin. Active convection associated with a Kelvin wave is over the western equatorial Pacific, with a suppressed convective phase in a Kelvin wave over the eastern Indian basin. Equatorial Rossby waves now have lower amplitude than signals in the MJO band. Active convection in seasonal to interannual signals continues to grow to the northwest of Australia, while suppressed convection associated with La Niña much more zonally confined over the central Pacific than in an average La Niña, concentrated near the equator between 160E and 175W.