Dynamo Intraseasonal State Summary

See commentary on pages 2 and 5.

February 3, 2012

Prepared by Paul E. Roundy
Convection in the MJO band continues to grow from northern Australia and surrounding waters, the northern Coral Sea, and the southwest Pacific. The highest amplitude OLR anomalies are south of the equator, consistent with the time of year, but the signal is becoming a little more symmetric about the equator than it has been in recent weeks. This intraseasonal signal stands out well above an inter annual signal of active convection across a similar region shifted several degrees of longitude to the west (see slides 3-4 for clarity). Although these OLR anomalies do suggest an equatorial Rossby wave train, with active convection over the central Indian basin and western Pacific, with suppressed convection in between, and some active convective signal in the Kelvin band over the western Indian basin and the central Pacific, these signals are weak in comparison with the negative OLR anomalies in the MJO band over the region from northeastern Australia across the southwest Pacific. However, the combination of signals in the ER and Kelvin bands might be sufficient to offset positive OLR anomalies in the MJO band over the south central Indian basin over the next few days. These combined signals are allowing for anomalous active convection presently in the vicinity of the southern portion of the dynamo array.
MJO active convection is located over the eastern Maritime Continent, the Coral Sea, and the south western tropical Pacific. An equatorial Rossby wave train is associated with negative OLR anomalies over the central Indian basin and the western Pacific Ocean, with suppressed convection over the Maritime Continent. A Kelvin wave is enhancing convection over the western Indian basin. Low frequency active convection remains over the Maritime Continent, but suppressed convection associated with La Nina remains unusually confined on the equator to the region between roughly 150E and 170W.